Note

This page was generated from `gallery/choropleths.ipynb`__.
Interactive online version: Binder badge

Choropleth classification schemes from PySAL for use with GeoPandas#

9e86c48445c94e9185ce6a935cd7d63f PySAL is a `Spatial Analysis Library <>`__, which packages fast spatial algorithms used in various fields. These include Exploratory spatial data analysis, spatial inequality analysis, spatial analysis on networks, spatial dynamics, and many more.

It is used under the hood in geopandas when plotting measures with a set of colors. There are many ways to classify data into different bins, depending on a number of classification schemes.

35fdf3c046094fd887f22da3d29b3d83

For example, if we have 20 countries whose average annual temperature varies between 5C and 25C, we can classify them in 4 bins by:

  • Quantiles

    • Separates the rows into equal parts, 5 countries per bin.

  • Equal Intervals

    • Separates the measure’s interval into equal parts, 5C per bin.

  • Natural Breaks (Fischer Jenks)

    • This algorithm tries to split the rows into naturally occurring clusters. The numbers per bin will depend on how the observations are located on the interval.

[1]:
import geopandas as gpd
import matplotlib.pyplot as plt
[2]:
# We use a PySAL example shapefile
import libpysal as ps

pth = ps.examples.get_path("columbus.shp")
tracts = gpd.GeoDataFrame.from_file(pth)
print("Observations, Attributes:", tracts.shape)
tracts.head()
Observations, Attributes: (49, 21)
[2]:
AREA PERIMETER COLUMBUS_ COLUMBUS_I POLYID NEIG HOVAL INC CRIME OPEN ... DISCBD X Y NSA NSB EW CP THOUS NEIGNO geometry
0 0.309441 2.440629 2 5 1 5 80.467003 19.531 15.725980 2.850747 ... 5.03 38.799999 44.070000 1.0 1.0 1.0 0.0 1000.0 1005.0 POLYGON ((8.62413 14.23698, 8.55970 14.74245, ...
1 0.259329 2.236939 3 1 2 1 44.567001 21.232 18.801754 5.296720 ... 4.27 35.619999 42.380001 1.0 1.0 0.0 0.0 1000.0 1001.0 POLYGON ((8.25279 14.23694, 8.28276 14.22994, ...
2 0.192468 2.187547 4 6 3 6 26.350000 15.956 30.626781 4.534649 ... 3.89 39.820000 41.180000 1.0 1.0 1.0 0.0 1000.0 1006.0 POLYGON ((8.65331 14.00809, 8.81814 14.00205, ...
3 0.083841 1.427635 5 2 4 2 33.200001 4.477 32.387760 0.394427 ... 3.70 36.500000 40.520000 1.0 1.0 0.0 0.0 1000.0 1002.0 POLYGON ((8.45950 13.82035, 8.47341 13.83227, ...
4 0.488888 2.997133 6 7 5 7 23.225000 11.252 50.731510 0.405664 ... 2.83 40.009998 38.000000 1.0 1.0 1.0 0.0 1000.0 1007.0 POLYGON ((8.68527 13.63952, 8.67758 13.72221, ...

5 rows × 21 columns

Plotting the CRIME variable#

In this example, we are taking a look at neighbourhood-level statistics for the city of Columbus, OH. We’d like to have an idea of how the crime rate variable is distributed around the city.

From the shapefile’s metadata: >CRIME: residential burglaries and vehicle thefts per 1000 households

[3]:
# Let's take a look at how the CRIME variable is distributed with a histogram
tracts["CRIME"].hist(bins=20)
plt.xlabel("CRIME\nResidential burglaries and vehicle thefts per 1000 households")
plt.ylabel("Number of neighbourhoods")
plt.title("Distribution of neighbourhoods by crime rate in Columbus, OH")
plt.show()
../_images/gallery_choropleths_4_0.png

Now let’s see what it looks like without a classification scheme:

[4]:
tracts.plot(column="CRIME", cmap="OrRd", edgecolor="k", legend=True)
[4]:
<AxesSubplot:>
../_images/gallery_choropleths_6_1.png

All the 49 neighbourhoods are colored along a white-to-dark-red gradient, but the human eye can have a hard time comparing the color of shapes that are distant one to the other. In this case, it is especially hard to rank the peripheral districts colored in beige.

Instead, we’ll classify them in color bins.

Classification by quantiles#

QUANTILES will create attractive maps that place an equal number of observations in each class: If you have 30 counties and 6 data classes, you’ll have 5 counties in each class. The problem with quantiles is that you can end up with classes that have very different numerical ranges (e.g., 1-4, 4-9, 9-250).

[5]:
# Splitting the data in three shows some spatial clustering around the center
tracts.plot(
    column="CRIME", scheme="quantiles", k=3, cmap="OrRd", edgecolor="k", legend=True
)
[5]:
<AxesSubplot:>
../_images/gallery_choropleths_9_1.png
[6]:
# We can also see where the top and bottom halves are located
tracts.plot(
    column="CRIME", scheme="quantiles", k=2, cmap="OrRd", edgecolor="k", legend=True
)
[6]:
<AxesSubplot:>
../_images/gallery_choropleths_10_1.png

Classification by equal intervals#

EQUAL INTERVAL divides the data into equal size classes (e.g., 0-10, 10-20, 20-30, etc.) and works best on data that is generally spread across the entire range. CAUTION: Avoid equal interval if your data are skewed to one end or if you have one or two really large outlier values.

[7]:
tracts.plot(
    column="CRIME",
    scheme="equal_interval",
    k=4,
    cmap="OrRd",
    edgecolor="k",
    legend=True,
)
[7]:
<AxesSubplot:>
../_images/gallery_choropleths_12_1.png
[8]:
# No legend here as we'd be out of space
tracts.plot(column="CRIME", scheme="equal_interval", k=12, cmap="OrRd", edgecolor="k")
[8]:
<AxesSubplot:>
../_images/gallery_choropleths_13_1.png

Classificaton by natural breaks#

NATURAL BREAKS is a kind of “optimal” classification scheme that finds class breaks that will minimize within-class variance and maximize between-class differences. One drawback of this approach is each dataset generates a unique classification solution, and if you need to make comparison across maps, such as in an atlas or a series (e.g., one map each for 1980, 1990, 2000) you might want to use a single scheme that can be applied across all of the maps.

[9]:
# Compare this to the previous 3-bin figure with quantiles
tracts.plot(
    column="CRIME",
    scheme="natural_breaks",
    k=3,
    cmap="OrRd",
    edgecolor="k",
    legend=True,
)
[9]:
<AxesSubplot:>
../_images/gallery_choropleths_15_1.png

Other classification schemes in PySAL#

Geopandas includes only the most used classifiers found in PySAL. In order to use the others, you will need to add them as additional columns to your GeoDataFrame.

The max-p algorithm determines the number of regions (p) endogenously based on a set of areas, a matrix of attributes on each area and a floor constraint. The floor constraint defines the minimum bound that a variable must reach for each region; for example, a constraint might be the minimum population each region must have. max-p further enforces a contiguity constraint on the areas within regions.

[10]:
def max_p(values, k):
    """
    Given a list of values and `k` bins,
    returns a list of their Maximum P bin number.
    """
    from mapclassify import MaxP

    binning = MaxP(values, k=k)
    return binning.yb


tracts["Max_P"] = max_p(tracts["CRIME"].values, k=5)
tracts.head()
[10]:
AREA PERIMETER COLUMBUS_ COLUMBUS_I POLYID NEIG HOVAL INC CRIME OPEN ... X Y NSA NSB EW CP THOUS NEIGNO geometry Max_P
0 0.309441 2.440629 2 5 1 5 80.467003 19.531 15.725980 2.850747 ... 38.799999 44.070000 1.0 1.0 1.0 0.0 1000.0 1005.0 POLYGON ((8.62413 14.23698, 8.55970 14.74245, ... 0
1 0.259329 2.236939 3 1 2 1 44.567001 21.232 18.801754 5.296720 ... 35.619999 42.380001 1.0 1.0 0.0 0.0 1000.0 1001.0 POLYGON ((8.25279 14.23694, 8.28276 14.22994, ... 0
2 0.192468 2.187547 4 6 3 6 26.350000 15.956 30.626781 4.534649 ... 39.820000 41.180000 1.0 1.0 1.0 0.0 1000.0 1006.0 POLYGON ((8.65331 14.00809, 8.81814 14.00205, ... 2
3 0.083841 1.427635 5 2 4 2 33.200001 4.477 32.387760 0.394427 ... 36.500000 40.520000 1.0 1.0 0.0 0.0 1000.0 1002.0 POLYGON ((8.45950 13.82035, 8.47341 13.83227, ... 2
4 0.488888 2.997133 6 7 5 7 23.225000 11.252 50.731510 0.405664 ... 40.009998 38.000000 1.0 1.0 1.0 0.0 1000.0 1007.0 POLYGON ((8.68527 13.63952, 8.67758 13.72221, ... 3

5 rows × 22 columns

[11]:
tracts.plot(column="Max_P", cmap="OrRd", edgecolor="k", categorical=True, legend=True)
[11]:
<AxesSubplot:>
../_images/gallery_choropleths_18_1.png
[ ]: