geopandas.GeoDataFrame.to_geo_dict#

GeoDataFrame.to_geo_dict(na='null', show_bbox=False, drop_id=False)[source]#

Returns a python feature collection representation of the GeoDataFrame as a dictionary with a list of features based on the __geo_interface__ GeoJSON-like specification.

Parameters:
nastr, optional

Options are {‘null’, ‘drop’, ‘keep’}, default ‘null’. Indicates how to output missing (NaN) values in the GeoDataFrame

  • null: output the missing entries as JSON null

  • drop: remove the property from the feature. This applies to each feature individually so that features may have different properties

  • keep: output the missing entries as NaN

show_bboxbool, optional

Include bbox (bounds) in the geojson. Default False.

drop_idbool, default: False

Whether to retain the index of the GeoDataFrame as the id property in the generated dictionary. Default is False, but may want True if the index is just arbitrary row numbers.

See also

GeoDataFrame.to_json

return a GeoDataFrame as a GeoJSON string

Examples

>>> from shapely.geometry import Point
>>> d = {'col1': ['name1', 'name2'], 'geometry': [Point(1, 2), Point(2, 1)]}
>>> gdf = geopandas.GeoDataFrame(d)
>>> gdf
    col1     geometry
0  name1  POINT (1 2)
1  name2  POINT (2 1)
>>> gdf.to_geo_dict()
{'type': 'FeatureCollection', 'features': [{'id': '0', 'type': 'Feature', 'properties': {'col1': 'name1'}, 'geometry': {'type': 'Point', 'coordinates': (1.0, 2.0)}}, {'id': '1', 'type': 'Feature', 'properties': {'col1': 'name2'}, 'geometry': {'type': 'Point', 'coordinates': (2.0, 1.0)}}]}