geopandas.GeoSeries.dwithin#
- GeoSeries.dwithin(other, distance, align=None)[source]#
Returns a
Series
ofdtype('bool')
with valueTrue
for each aligned geometry that is within a set distance fromother
.The operation works on a 1-to-1 row-wise manner:
- Parameters:
- otherGeoSeries or geometric object
The GeoSeries (elementwise) or geometric object to test for equality.
- distancefloat, np.array, pd.Series
Distance(s) to test if each geometry is within. A scalar distance will be applied to all geometries. An array or Series will be applied elementwise. If np.array or pd.Series are used then it must have same length as the GeoSeries.
- alignbool | None (default None)
If True, automatically aligns GeoSeries based on their indices. If False, the order of elements is preserved. None defaults to True.
- Returns:
- Series (bool)
See also
Notes
This method works in a row-wise manner. It does not check if an element of one GeoSeries is within the set distance of any element of the other one.
Examples
>>> from shapely.geometry import Polygon, LineString, Point >>> s = geopandas.GeoSeries( ... [ ... Polygon([(0, 0), (1, 1), (0, 1)]), ... LineString([(0, 0), (0, 2)]), ... LineString([(0, 0), (0, 1)]), ... Point(0, 1), ... ], ... index=range(0, 4), ... ) >>> s2 = geopandas.GeoSeries( ... [ ... Polygon([(1, 0), (4, 2), (2, 2)]), ... Polygon([(2, 0), (3, 2), (2, 2)]), ... LineString([(2, 0), (2, 2)]), ... Point(1, 1), ... ], ... index=range(1, 5), ... )
>>> s 0 POLYGON ((0 0, 1 1, 0 1, 0 0)) 1 LINESTRING (0 0, 0 2) 2 LINESTRING (0 0, 0 1) 3 POINT (0 1) dtype: geometry
>>> s2 1 POLYGON ((1 0, 4 2, 2 2, 1 0)) 2 POLYGON ((2 0, 3 2, 2 2, 2 0)) 3 LINESTRING (2 0, 2 2) 4 POINT (1 1) dtype: geometry
We can check if each geometry of GeoSeries contains a single geometry:
>>> point = Point(0, 1) >>> s2.dwithin(point, 1.8) 1 True 2 False 3 False 4 True dtype: bool
We can also check two GeoSeries against each other, row by row. The GeoSeries above have different indices. We can either align both GeoSeries based on index values and compare elements with the same index using
align=True
or ignore index and compare elements based on their matching order usingalign=False
:>>> s.dwithin(s2, distance=1, align=True) 0 False 1 True 2 False 3 False 4 False dtype: bool
>>> s.dwithin(s2, distance=1, align=False) 0 True 1 False 2 False 3 True dtype: bool