geopandas.sjoin#
- geopandas.sjoin(left_df, right_df, how='inner', predicate='intersects', lsuffix='left', rsuffix='right', distance=None, on_attribute=None, **kwargs)[source]#
Spatial join of two GeoDataFrames.
See the User Guide page Merging data for details.
- Parameters:
- left_df, right_dfGeoDataFrames
- howstring, default ‘inner’
The type of join:
‘left’: use keys from left_df; retain only left_df geometry column
‘right’: use keys from right_df; retain only right_df geometry column
‘inner’: use intersection of keys from both dfs; retain only left_df geometry column
- predicatestring, default ‘intersects’
Binary predicate. Valid values are determined by the spatial index used. You can check the valid values in left_df or right_df as
left_df.sindex.valid_query_predicates
orright_df.sindex.valid_query_predicates
Replaces deprecatedop
parameter.- lsuffixstring, default ‘left’
Suffix to apply to overlapping column names (left GeoDataFrame).
- rsuffixstring, default ‘right’
Suffix to apply to overlapping column names (right GeoDataFrame).
- distancenumber or array_like, optional
Distance(s) around each input geometry within which to query the tree for the ‘dwithin’ predicate. If array_like, must be one-dimesional with length equal to length of left GeoDataFrame. Required if
predicate='dwithin'
.- on_attributestring, list or tuple
Column name(s) to join on as an additional join restriction on top of the spatial predicate. These must be found in both DataFrames. If set, observations are joined only if the predicate applies and values in specified columns match.
See also
overlay
overlay operation resulting in a new geometry
GeoDataFrame.sjoin
equivalent method
Notes
Every operation in GeoPandas is planar, i.e. the potential third dimension is not taken into account.
Examples
>>> import geodatasets >>> chicago = geopandas.read_file( ... geodatasets.get_path("geoda.chicago_health") ... ) >>> groceries = geopandas.read_file( ... geodatasets.get_path("geoda.groceries") ... ).to_crs(chicago.crs)
>>> chicago.head() ComAreaID ... geometry 0 35 ... POLYGON ((-87.60914 41.84469, -87.60915 41.844... 1 36 ... POLYGON ((-87.59215 41.81693, -87.59231 41.816... 2 37 ... POLYGON ((-87.62880 41.80189, -87.62879 41.801... 3 38 ... POLYGON ((-87.60671 41.81681, -87.60670 41.816... 4 39 ... POLYGON ((-87.59215 41.81693, -87.59215 41.816... [5 rows x 87 columns]
>>> groceries.head() OBJECTID Ycoord ... Category geometry 0 16 41.973266 ... NaN MULTIPOINT (-87.65661 41.97321) 1 18 41.696367 ... NaN MULTIPOINT (-87.68136 41.69713) 2 22 41.868634 ... NaN MULTIPOINT (-87.63918 41.86847) 3 23 41.877590 ... new MULTIPOINT (-87.65495 41.87783) 4 27 41.737696 ... NaN MULTIPOINT (-87.62715 41.73623) [5 rows x 8 columns]
>>> groceries_w_communities = geopandas.sjoin(groceries, chicago) >>> groceries_w_communities.head() OBJECTID community geometry 0 16 UPTOWN MULTIPOINT ((-87.65661 41.97321)) 1 18 MORGAN PARK MULTIPOINT ((-87.68136 41.69713)) 2 22 NEAR WEST SIDE MULTIPOINT ((-87.63918 41.86847)) 3 23 NEAR WEST SIDE MULTIPOINT ((-87.65495 41.87783)) 4 27 CHATHAM MULTIPOINT ((-87.62715 41.73623)) [5 rows x 95 columns]