geopandas.GeoDataFrame#

class geopandas.GeoDataFrame(data=None, *args, geometry=None, crs=None, **kwargs)[source]#

A GeoDataFrame object is a pandas.DataFrame that has one or more columns containing geometry. In addition to the standard DataFrame constructor arguments, GeoDataFrame also accepts the following keyword arguments:

Parameters:
crsvalue (optional)

Coordinate Reference System of the geometry objects. Can be anything accepted by pyproj.CRS.from_user_input(), such as an authority string (eg “EPSG:4326”) or a WKT string.

geometrystr or array-like (optional)

Value to use as the active geometry column. If str, treated as column name to use. If array-like, it will be added as new column named ‘geometry’ on the GeoDataFrame and set as the active geometry column.

Note that if geometry is a (Geo)Series with a name, the name will not be used, a column named “geometry” will still be added. To preserve the name, you can use rename_geometry() to update the geometry column name.

See also

GeoSeries

Series object designed to store shapely geometry objects

Examples

Constructing GeoDataFrame from a dictionary.

>>> from shapely.geometry import Point
>>> d = {'col1': ['name1', 'name2'], 'geometry': [Point(1, 2), Point(2, 1)]}
>>> gdf = geopandas.GeoDataFrame(d, crs="EPSG:4326")
>>> gdf
    col1     geometry
0  name1  POINT (1 2)
1  name2  POINT (2 1)

Notice that the inferred dtype of ‘geometry’ columns is geometry.

>>> gdf.dtypes
col1          object
geometry    geometry
dtype: object

Constructing GeoDataFrame from a pandas DataFrame with a column of WKT geometries:

>>> import pandas as pd
>>> d = {'col1': ['name1', 'name2'], 'wkt': ['POINT (1 2)', 'POINT (2 1)']}
>>> df = pd.DataFrame(d)
>>> gs = geopandas.GeoSeries.from_wkt(df['wkt'])
>>> gdf = geopandas.GeoDataFrame(df, geometry=gs, crs="EPSG:4326")
>>> gdf
    col1          wkt     geometry
0  name1  POINT (1 2)  POINT (1 2)
1  name2  POINT (2 1)  POINT (2 1)
__init__(data=None, *args, geometry=None, crs=None, **kwargs)[source]#

Methods

__init__([data, geometry, crs])

abs()

Return a Series/DataFrame with absolute numeric value of each element.

add(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator add).

add_prefix(prefix[, axis])

Prefix labels with string prefix.

add_suffix(suffix[, axis])

Suffix labels with string suffix.

affine_transform(matrix)

Return a GeoSeries with translated geometries.

agg([func, axis])

Aggregate using one or more operations over the specified axis.

aggregate([func, axis])

Aggregate using one or more operations over the specified axis.

align(other[, join, axis, level, copy, ...])

Align two objects on their axes with the specified join method.

all([axis, bool_only, skipna])

Return whether all elements are True, potentially over an axis.

any(*[, axis, bool_only, skipna])

Return whether any element is True, potentially over an axis.

apply(func[, axis, raw, result_type, args])

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

applymap(func[, na_action])

Apply a function to a Dataframe elementwise.

asfreq(freq[, method, how, normalize, ...])

Convert time series to specified frequency.

asof(where[, subset])

Return the last row(s) without any NaNs before where.

assign(**kwargs)

Assign new columns to a DataFrame.

astype(dtype[, copy, errors])

Cast a pandas object to a specified dtype dtype.

at_time(time[, asof, axis])

Select values at particular time of day (e.g., 9:30AM).

backfill(*[, axis, inplace, limit, downcast])

Fill NA/NaN values by using the next valid observation to fill the gap.

between_time(start_time, end_time[, ...])

Select values between particular times of the day (e.g., 9:00-9:30 AM).

bfill(*[, axis, inplace, limit, limit_area, ...])

Fill NA/NaN values by using the next valid observation to fill the gap.

bool()

Return the bool of a single element Series or DataFrame.

boxplot([column, by, ax, fontsize, rot, ...])

Make a box plot from DataFrame columns.

buffer(distance[, resolution, cap_style, ...])

Returns a GeoSeries of geometries representing all points within a given distance of each geometric object.

build_area([node])

Creates an areal geometry formed by the constituent linework.

clip(mask[, keep_geom_type, sort])

Clip points, lines, or polygon geometries to the mask extent.

clip_by_rect(xmin, ymin, xmax, ymax)

Returns a GeoSeries of the portions of geometry within the given rectangle.

combine(other, func[, fill_value, overwrite])

Perform column-wise combine with another DataFrame.

combine_first(other)

Update null elements with value in the same location in other.

compare(other[, align_axis, keep_shape, ...])

Compare to another DataFrame and show the differences.

concave_hull([ratio, allow_holes])

Returns a GeoSeries of geometries representing the concave hull of each geometry.

contains(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that contains other.

contains_properly(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that is completely inside other, with no common boundary points.

convert_dtypes([infer_objects, ...])

Convert columns to the best possible dtypes using dtypes supporting pd.NA.

copy([deep])

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

corr([method, min_periods, numeric_only])

Compute pairwise correlation of columns, excluding NA/null values.

corrwith(other[, axis, drop, method, ...])

Compute pairwise correlation.

count([axis, numeric_only])

Count non-NA cells for each column or row.

count_coordinates()

Returns a Series containing the count of the number of coordinate pairs in each geometry.

count_geometries()

Returns a Series containing the count of geometries in each multi-part geometry.

count_interior_rings()

Returns a Series containing the count of the number of interior rings in a polygonal geometry.

cov([min_periods, ddof, numeric_only])

Compute pairwise covariance of columns, excluding NA/null values.

covered_by(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that is entirely covered by other.

covers(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that is entirely covering other.

crosses(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that cross other.

cummax([axis, skipna])

Return cumulative maximum over a DataFrame or Series axis.

cummin([axis, skipna])

Return cumulative minimum over a DataFrame or Series axis.

cumprod([axis, skipna])

Return cumulative product over a DataFrame or Series axis.

cumsum([axis, skipna])

Return cumulative sum over a DataFrame or Series axis.

delaunay_triangles([tolerance, only_edges])

Returns a GeoSeries consisting of objects representing the computed Delaunay triangulation between the vertices of an input geometry.

describe([percentiles, include, exclude])

Generate descriptive statistics.

diff([periods, axis])

First discrete difference of element.

difference(other[, align])

Returns a GeoSeries of the points in each aligned geometry that are not in other.

disjoint(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry disjoint to other.

dissolve([by, aggfunc, as_index, level, ...])

Dissolve geometries within groupby into single observation.

distance(other[, align])

Returns a Series containing the distance to aligned other.

div(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

divide(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

dot(other)

Compute the matrix multiplication between the DataFrame and other.

drop([labels, axis, index, columns, level, ...])

Drop specified labels from rows or columns.

drop_duplicates([subset, keep, inplace, ...])

Return DataFrame with duplicate rows removed.

droplevel(level[, axis])

Return Series/DataFrame with requested index / column level(s) removed.

dropna(*[, axis, how, thresh, subset, ...])

Remove missing values.

duplicated([subset, keep])

Return boolean Series denoting duplicate rows.

dwithin(other, distance[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that is within a set distance from other.

eq(other[, axis, level])

Get Equal to of dataframe and other, element-wise (binary operator eq).

equals(other)

Test whether two objects contain the same elements.

estimate_utm_crs([datum_name])

Returns the estimated UTM CRS based on the bounds of the dataset.

eval(expr, *[, inplace])

Evaluate a string describing operations on DataFrame columns.

ewm([com, span, halflife, alpha, ...])

Provide exponentially weighted (EW) calculations.

expanding([min_periods, axis, method])

Provide expanding window calculations.

explode([column, ignore_index, index_parts])

Explode multi-part geometries into multiple single geometries.

explore(*args, **kwargs)

Interactive map based on GeoPandas and folium/leaflet.js

extract_unique_points()

Returns a GeoSeries of MultiPoints representing all distinct vertices of an input geometry.

ffill(*[, axis, inplace, limit, limit_area, ...])

Fill NA/NaN values by propagating the last valid observation to next valid.

fillna([value, method, axis, inplace, ...])

Fill NA/NaN values using the specified method.

filter([items, like, regex, axis])

Subset the dataframe rows or columns according to the specified index labels.

first(offset)

Select initial periods of time series data based on a date offset.

first_valid_index()

Return index for first non-NA value or None, if no non-NA value is found.

floordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator floordiv).

force_2d()

Forces the dimensionality of a geometry to 2D.

force_3d([z])

Forces the dimensionality of a geometry to 3D.

frechet_distance(other[, align, densify])

Returns a Series containing the Frechet distance to aligned other.

from_arrow(table[, geometry])

Construct a GeoDataFrame from a Arrow table object based on GeoArrow extension types.

from_dict(data[, geometry, crs])

Construct GeoDataFrame from dict of array-like or dicts by overriding DataFrame.from_dict method with geometry and crs

from_features(features[, crs, columns])

Alternate constructor to create GeoDataFrame from an iterable of features or a feature collection.

from_file(filename, **kwargs)

Alternate constructor to create a GeoDataFrame from a file.

from_postgis(sql, con[, geom_col, crs, ...])

Alternate constructor to create a GeoDataFrame from a sql query containing a geometry column in WKB representation.

from_records(data[, index, exclude, ...])

Convert structured or record ndarray to DataFrame.

ge(other[, axis, level])

Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).

geom_almost_equals(other[, decimal, align])

Returns a Series of dtype('bool') with value True if each aligned geometry is approximately equal to other.

geom_equals(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry equal to other.

geom_equals_exact(other, tolerance[, align])

Return True for all geometries that equal aligned other to a given tolerance, else False.

get(key[, default])

Get item from object for given key (ex: DataFrame column).

get_coordinates([include_z, ignore_index, ...])

Gets coordinates from a GeoSeries as a DataFrame of floats.

get_geometry(index)

Returns the n-th geometry from a collection of geometries.

get_precision()

Returns a Series of the precision of each geometry.

groupby([by, axis, level, as_index, sort, ...])

Group DataFrame using a mapper or by a Series of columns.

gt(other[, axis, level])

Get Greater than of dataframe and other, element-wise (binary operator gt).

hausdorff_distance(other[, align, densify])

Returns a Series containing the Hausdorff distance to aligned other.

head([n])

Return the first n rows.

hilbert_distance([total_bounds, level])

Calculate the distance along a Hilbert curve.

hist([column, by, grid, xlabelsize, xrot, ...])

Make a histogram of the DataFrame's columns.

idxmax([axis, skipna, numeric_only])

Return index of first occurrence of maximum over requested axis.

idxmin([axis, skipna, numeric_only])

Return index of first occurrence of minimum over requested axis.

infer_objects([copy])

Attempt to infer better dtypes for object columns.

info([verbose, buf, max_cols, memory_usage, ...])

Print a concise summary of a DataFrame.

insert(loc, column, value[, allow_duplicates])

Insert column into DataFrame at specified location.

interpolate(distance[, normalized])

Return a point at the specified distance along each geometry

intersection(other[, align])

Returns a GeoSeries of the intersection of points in each aligned geometry with other.

intersection_all()

Returns a geometry containing the intersection of all geometries in the GeoSeries.

intersects(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that intersects other.

is_valid_reason()

Returns a Series of strings with the reason for invalidity of each geometry.

isetitem(loc, value)

Set the given value in the column with position loc.

isin(values)

Whether each element in the DataFrame is contained in values.

isna()

Detect missing values.

isnull()

DataFrame.isnull is an alias for DataFrame.isna.

items()

Iterate over (column name, Series) pairs.

iterfeatures([na, show_bbox, drop_id])

Returns an iterator that yields feature dictionaries that comply with __geo_interface__

iterrows()

Iterate over DataFrame rows as (index, Series) pairs.

itertuples([index, name])

Iterate over DataFrame rows as namedtuples.

join(other[, on, how, lsuffix, rsuffix, ...])

Join columns of another DataFrame.

keys()

Get the 'info axis' (see Indexing for more).

kurt([axis, skipna, numeric_only])

Return unbiased kurtosis over requested axis.

kurtosis([axis, skipna, numeric_only])

Return unbiased kurtosis over requested axis.

last(offset)

Select final periods of time series data based on a date offset.

last_valid_index()

Return index for last non-NA value or None, if no non-NA value is found.

le(other[, axis, level])

Get Less than or equal to of dataframe and other, element-wise (binary operator le).

line_merge([directed])

Returns (Multi)LineStrings formed by combining the lines in a MultiLineString.

lt(other[, axis, level])

Get Less than of dataframe and other, element-wise (binary operator lt).

make_valid()

Repairs invalid geometries.

map(func[, na_action])

Apply a function to a Dataframe elementwise.

mask(cond[, other, inplace, axis, level])

Replace values where the condition is True.

max([axis, skipna, numeric_only])

Return the maximum of the values over the requested axis.

mean([axis, skipna, numeric_only])

Return the mean of the values over the requested axis.

median([axis, skipna, numeric_only])

Return the median of the values over the requested axis.

melt([id_vars, value_vars, var_name, ...])

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

memory_usage([index, deep])

Return the memory usage of each column in bytes.

merge(right[, how, on, left_on, right_on, ...])

Merge DataFrame or named Series objects with a database-style join.

min([axis, skipna, numeric_only])

Return the minimum of the values over the requested axis.

minimum_bounding_circle()

Returns a GeoSeries of geometries representing the minimum bounding circle that encloses each geometry.

minimum_bounding_radius()

Returns a Series of the radii of the minimum bounding circles that enclose each geometry.

minimum_clearance()

Returns a Series containing the minimum clearance distance, which is the smallest distance by which a vertex of the geometry could be moved to produce an invalid geometry.

minimum_rotated_rectangle()

Returns a GeoSeries of the general minimum bounding rectangle that contains the object.

mod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator mod).

mode([axis, numeric_only, dropna])

Get the mode(s) of each element along the selected axis.

mul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

multiply(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

ne(other[, axis, level])

Get Not equal to of dataframe and other, element-wise (binary operator ne).

nlargest(n, columns[, keep])

Return the first n rows ordered by columns in descending order.

normalize()

Returns a GeoSeries of normalized geometries to normal form (or canonical form).

notna()

Detect existing (non-missing) values.

notnull()

DataFrame.notnull is an alias for DataFrame.notna.

nsmallest(n, columns[, keep])

Return the first n rows ordered by columns in ascending order.

nunique([axis, dropna])

Count number of distinct elements in specified axis.

offset_curve(distance[, quad_segs, ...])

Returns a LineString or MultiLineString geometry at a distance from the object on its right or its left side.

overlaps(other[, align])

Returns True for all aligned geometries that overlap other, else False.

overlay(right[, how, keep_geom_type, make_valid])

Perform spatial overlay between GeoDataFrames.

pad(*[, axis, inplace, limit, downcast])

Fill NA/NaN values by propagating the last valid observation to next valid.

pct_change([periods, fill_method, limit, freq])

Fractional change between the current and a prior element.

pipe(func, *args, **kwargs)

Apply chainable functions that expect Series or DataFrames.

pivot(*, columns[, index, values])

Return reshaped DataFrame organized by given index / column values.

pivot_table([values, index, columns, ...])

Create a spreadsheet-style pivot table as a DataFrame.

polygonize([node, full])

Creates polygons formed from the linework of a GeoSeries.

pop(item)

Return item and drop from frame.

pow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator pow).

prod([axis, skipna, numeric_only, min_count])

Return the product of the values over the requested axis.

product([axis, skipna, numeric_only, min_count])

Return the product of the values over the requested axis.

project(other[, normalized, align])

Return the distance along each geometry nearest to other

quantile([q, axis, numeric_only, ...])

Return values at the given quantile over requested axis.

query(expr, *[, inplace])

Query the columns of a DataFrame with a boolean expression.

radd(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator radd).

rank([axis, method, numeric_only, ...])

Compute numerical data ranks (1 through n) along axis.

rdiv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

reindex([labels, index, columns, axis, ...])

Conform DataFrame to new index with optional filling logic.

reindex_like(other[, method, copy, limit, ...])

Return an object with matching indices as other object.

relate(other[, align])

Returns the DE-9IM intersection matrices for the geometries

relate_pattern(other, pattern[, align])

Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern, else False.

remove_repeated_points([tolerance])

Returns a GeoSeries containing a copy of the input geometry with repeated points removed.

rename([mapper, index, columns, axis, copy, ...])

Rename columns or index labels.

rename_axis([mapper, index, columns, axis, ...])

Set the name of the axis for the index or columns.

rename_geometry(col[, inplace])

Renames the GeoDataFrame geometry column to the specified name.

reorder_levels(order[, axis])

Rearrange index levels using input order.

replace([to_replace, value, inplace, limit, ...])

Replace values given in to_replace with value.

representative_point()

Returns a GeoSeries of (cheaply computed) points that are guaranteed to be within each geometry.

resample(rule[, axis, closed, label, ...])

Resample time-series data.

reset_index([level, drop, inplace, ...])

Reset the index, or a level of it.

reverse()

Returns a GeoSeries with the order of coordinates reversed.

rfloordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).

rmod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator rmod).

rmul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator rmul).

rolling(window[, min_periods, center, ...])

Provide rolling window calculations.

rotate(angle[, origin, use_radians])

Returns a GeoSeries with rotated geometries.

round([decimals])

Round a DataFrame to a variable number of decimal places.

rpow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

rsub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator rsub).

rtruediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

sample([n, frac, replace, weights, ...])

Return a random sample of items from an axis of object.

sample_points(size[, method, seed, rng])

Sample points from each geometry.

scale([xfact, yfact, zfact, origin])

Returns a GeoSeries with scaled geometries.

segmentize(max_segment_length)

Returns a GeoSeries with vertices added to line segments based on maximum segment length.

select_dtypes([include, exclude])

Return a subset of the DataFrame's columns based on the column dtypes.

sem([axis, skipna, ddof, numeric_only])

Return unbiased standard error of the mean over requested axis.

set_axis(labels, *[, axis, copy])

Assign desired index to given axis.

set_crs([crs, epsg, inplace, allow_override])

Set the Coordinate Reference System (CRS) of the GeoDataFrame.

set_flags(*[, copy, allows_duplicate_labels])

Return a new object with updated flags.

set_geometry(col[, drop, inplace, crs])

Set the GeoDataFrame geometry using either an existing column or the specified input.

set_index(keys, *[, drop, append, inplace, ...])

Set the DataFrame index using existing columns.

set_precision(grid_size[, mode])

Returns a GeoSeries with the precision set to a precision grid size.

shared_paths(other[, align])

Returns the shared paths between two geometries.

shift([periods, freq, axis, fill_value, suffix])

Shift index by desired number of periods with an optional time freq.

shortest_line(other[, align])

Returns the shortest two-point line between two geometries.

simplify(tolerance[, preserve_topology])

Returns a GeoSeries containing a simplified representation of each geometry.

sjoin(df, *args, **kwargs)

Spatial join of two GeoDataFrames.

sjoin_nearest(right[, how, max_distance, ...])

Spatial join of two GeoDataFrames based on the distance between their geometries.

skew([xs, ys, origin, use_radians])

Returns a GeoSeries with skewed geometries.

snap(other, tolerance[, align])

Snaps an input geometry to reference geometry's vertices.

sort_index(*[, axis, level, ascending, ...])

Sort object by labels (along an axis).

sort_values(by, *[, axis, ascending, ...])

Sort by the values along either axis.

squeeze([axis])

Squeeze 1 dimensional axis objects into scalars.

stack([level, dropna, sort, future_stack])

Stack the prescribed level(s) from columns to index.

std([axis, skipna, ddof, numeric_only])

Return sample standard deviation over requested axis.

sub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

subtract(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

sum([axis, skipna, numeric_only, min_count])

Return the sum of the values over the requested axis.

swapaxes(axis1, axis2[, copy])

Interchange axes and swap values axes appropriately.

swaplevel([i, j, axis])

Swap levels i and j in a MultiIndex.

symmetric_difference(other[, align])

Returns a GeoSeries of the symmetric difference of points in each aligned geometry with other.

tail([n])

Return the last n rows.

take(indices[, axis])

Return the elements in the given positional indices along an axis.

to_arrow(*[, index, geometry_encoding, ...])

Encode a GeoDataFrame to GeoArrow format.

to_clipboard(*[, excel, sep])

Copy object to the system clipboard.

to_crs([crs, epsg, inplace])

Transform geometries to a new coordinate reference system.

to_csv([path_or_buf, sep, na_rep, ...])

Write object to a comma-separated values (csv) file.

to_dict([orient, into, index])

Convert the DataFrame to a dictionary.

to_excel(excel_writer, *[, sheet_name, ...])

Write object to an Excel sheet.

to_feather(path[, index, compression, ...])

Write a GeoDataFrame to the Feather format.

to_file(filename[, driver, schema, index])

Write the GeoDataFrame to a file.

to_gbq(destination_table, *[, project_id, ...])

Write a DataFrame to a Google BigQuery table.

to_geo_dict([na, show_bbox, drop_id])

Returns a python feature collection representation of the GeoDataFrame as a dictionary with a list of features based on the __geo_interface__ GeoJSON-like specification.

to_hdf(path_or_buf, *, key[, mode, ...])

Write the contained data to an HDF5 file using HDFStore.

to_html([buf, columns, col_space, header, ...])

Render a DataFrame as an HTML table.

to_json([na, show_bbox, drop_id, to_wgs84])

Returns a GeoJSON representation of the GeoDataFrame as a string.

to_latex([buf, columns, header, index, ...])

Render object to a LaTeX tabular, longtable, or nested table.

to_markdown([buf, mode, index, storage_options])

Print DataFrame in Markdown-friendly format.

to_numpy([dtype, copy, na_value])

Convert the DataFrame to a NumPy array.

to_orc([path, engine, index, engine_kwargs])

Write a DataFrame to the ORC format.

to_parquet(path[, index, compression, ...])

Write a GeoDataFrame to the Parquet format.

to_period([freq, axis, copy])

Convert DataFrame from DatetimeIndex to PeriodIndex.

to_pickle(path, *[, compression, protocol, ...])

Pickle (serialize) object to file.

to_postgis(name, con[, schema, if_exists, ...])

Upload GeoDataFrame into PostGIS database.

to_records([index, column_dtypes, index_dtypes])

Convert DataFrame to a NumPy record array.

to_sql(name, con, *[, schema, if_exists, ...])

Write records stored in a DataFrame to a SQL database.

to_stata(path, *[, convert_dates, ...])

Export DataFrame object to Stata dta format.

to_string([buf, columns, col_space, header, ...])

Render a DataFrame to a console-friendly tabular output.

to_timestamp([freq, how, axis, copy])

Cast to DatetimeIndex of timestamps, at beginning of period.

to_wkb([hex])

Encode all geometry columns in the GeoDataFrame to WKB.

to_wkt(**kwargs)

Encode all geometry columns in the GeoDataFrame to WKT.

to_xarray()

Return an xarray object from the pandas object.

to_xml([path_or_buffer, index, root_name, ...])

Render a DataFrame to an XML document.

touches(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that touches other.

transform(transformation[, include_z])

Returns a GeoSeries with the transformation function applied to the geometry coordinates.

translate([xoff, yoff, zoff])

Returns a GeoSeries with translated geometries.

transpose(*args[, copy])

Transpose index and columns.

truediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

truncate([before, after, axis, copy])

Truncate a Series or DataFrame before and after some index value.

tz_convert(tz[, axis, level, copy])

Convert tz-aware axis to target time zone.

tz_localize(tz[, axis, level, copy, ...])

Localize tz-naive index of a Series or DataFrame to target time zone.

union(other[, align])

Returns a GeoSeries of the union of points in each aligned geometry with other.

union_all([method])

Returns a geometry containing the union of all geometries in the GeoSeries.

unstack([level, fill_value, sort])

Pivot a level of the (necessarily hierarchical) index labels.

update(other[, join, overwrite, ...])

Modify in place using non-NA values from another DataFrame.

value_counts([subset, normalize, sort, ...])

Return a Series containing the frequency of each distinct row in the Dataframe.

var([axis, skipna, ddof, numeric_only])

Return unbiased variance over requested axis.

voronoi_polygons([tolerance, extend_to, ...])

Returns a GeoSeries consisting of objects representing the computed Voronoi diagram around the vertices of an input geometry.

where(cond[, other, inplace, axis, level])

Replace values where the condition is False.

within(other[, align])

Returns a Series of dtype('bool') with value True for each aligned geometry that is within other.

xs(key[, axis, level, drop_level])

Return cross-section from the Series/DataFrame.

Attributes

T

The transpose of the DataFrame.

active_geometry_name

Return the name of the active geometry column

area

Returns a Series containing the area of each geometry in the GeoSeries expressed in the units of the CRS.

at

Access a single value for a row/column label pair.

attrs

Dictionary of global attributes of this dataset.

axes

Return a list representing the axes of the DataFrame.

boundary

Returns a GeoSeries of lower dimensional objects representing each geometry's set-theoretic boundary.

bounds

Returns a DataFrame with columns minx, miny, maxx, maxy values containing the bounds for each geometry.

centroid

Returns a GeoSeries of points representing the centroid of each geometry.

columns

The column labels of the DataFrame.

convex_hull

Returns a GeoSeries of geometries representing the convex hull of each geometry.

crs

The Coordinate Reference System (CRS) represented as a pyproj.CRS object.

cx

Coordinate based indexer to select by intersection with bounding box.

dtypes

Return the dtypes in the DataFrame.

empty

Indicator whether Series/DataFrame is empty.

envelope

Returns a GeoSeries of geometries representing the envelope of each geometry.

exterior

Returns a GeoSeries of LinearRings representing the outer boundary of each polygon in the GeoSeries.

flags

Get the properties associated with this pandas object.

geom_type

Returns a Series of strings specifying the Geometry Type of each object.

geometry

Geometry data for GeoDataFrame

has_sindex

Check the existence of the spatial index without generating it.

has_z

Returns a Series of dtype('bool') with value True for features that have a z-component.

iat

Access a single value for a row/column pair by integer position.

iloc

Purely integer-location based indexing for selection by position.

index

The index (row labels) of the DataFrame.

interiors

Returns a Series of List representing the inner rings of each polygon in the GeoSeries.

is_ccw

Returns a Series of dtype('bool') with value True if a LineString or LinearRing is counterclockwise.

is_closed

Returns a Series of dtype('bool') with value True if a LineString's or LinearRing's first and last points are equal.

is_empty

Returns a Series of dtype('bool') with value True for empty geometries.

is_ring

Returns a Series of dtype('bool') with value True for features that are closed.

is_simple

Returns a Series of dtype('bool') with value True for geometries that do not cross themselves.

is_valid

Returns a Series of dtype('bool') with value True for geometries that are valid.

length

Returns a Series containing the length of each geometry expressed in the units of the CRS.

loc

Access a group of rows and columns by label(s) or a boolean array.

ndim

Return an int representing the number of axes / array dimensions.

shape

Return a tuple representing the dimensionality of the DataFrame.

sindex

Generate the spatial index

size

Return an int representing the number of elements in this object.

style

Returns a Styler object.

total_bounds

Returns a tuple containing minx, miny, maxx, maxy values for the bounds of the series as a whole.

type

Return the geometry type of each geometry in the GeoSeries

unary_union

Returns a geometry containing the union of all geometries in the GeoSeries.

values

Return a Numpy representation of the DataFrame.